• 新闻与活动

    学术成果

Virtual Coformer Screening by a Combined Machine Learning and Physics-based Approach

CrystEngComm, 2021,23, 6039-6044

Cocrystals as a solid form technology for improving physicochemical properties have gained increasing popularity in the pharmaceutical, nutraceutical, and agrochemical industries. However, the list of potential coformers contains hundreds of molecules; far more than can be routinely screened and confirmed. Cocrystal screening experiments require significant amounts of active ingredients at an early project stage, and are expensive and time-consuming. Physics-based models and machine learning (ML) models have both been used to perform virtual cocrystal screening to guide experimental screening efforts, but both have certain limitations. Here, we present a combined ML/COSMO-RS fast virtual cocrystal screening method that proves to be significantly better than the sum of its parts in application to internal and external validation sets. To achieve that, we have defined the optimal threshold values of ML cocrystallization probability and COSMO-RS excess enthalpy of drug/coformer mixing for the combined coformer ranking. An approach to determine an applicability domain (AD) of the ML model has been implemented. The speed and accuracy of the new combined model allow it to be a good alternative to the physics-based CSP-based approach to support pharmaceutical projects with tight timeline and budget constraints.

想继续了解更多?

联系我们

我们期待您的留言

让我们知道如何为您提供帮助,我们团队将24小时内与您联系!

姓名
电话
邮箱
国家/地区
北京市
天津市
上海市
重庆市
河北省
山西省
辽宁省
吉林省
黑龙江省
江苏省
浙江省
安徽省
福建省
江西省
山东省
河南省
湖北省
湖南省
广东省
海南省
四川省
贵州省
云南省
陕西省
甘肃省
青海省
台湾省
内蒙古自治区
广西壮族自治区
西藏自治区
宁夏回族自治区
新疆维吾尔自治区
香港特别行政区
澳门特别行政区
从事行业
小分子药物研发
抗体药物研发
CRO/CDMO
投融资机构
高校/研究院所/医院
园区
生物医药产业
感兴趣的业务
小分子药物发现
抗体药物发现
药物固体形态研发
化学合成服务(含自动化合成)
实验室自动化解决方案
所在公司
是否需要业务人员跟进?
暂不需要
验证码

我已阅读并同意 晶泰科技隐私政策法律声明