Hybrid model provides a practical solution for efficiently advancing programs with the highest chance for success
In order to advance preclinical and clinical projects, it is important to thoroughly characterize the active pharmaceutical ingredient (API) candidates to ensure that they have the appropriate bioavailability and physicochemical properties, allowing only the most promising candidates to move into in vivo studies. Detailed knowledge of the API properties can also inform manufacturing techniques as well as identify any excipients that may need to be addressed.
XtalPi provides both industry-leading computational analyses and state-of-the-art experimental techniques to help screen preclinical candidates. Our hybrid computational/experimental model strikes the perfect balance between speed and accuracy, making it a practical solution.
Hybrid Computational/Experimental Approach
-
Solid Form Screening
Virtual and experimental solvent screening
Polymorph screening
Salts screening
Virtual and experimental cocrystal screening
Amorphous solid dispersion screening
-
Structural Characterization
Single crystal preparation and structural determination (SC-XRD)
Determine single crystal structure from powder (MicroED)
Quantitative analytical method development of XRPD
Conventional solid-state characterization
-
Physicochemical Properties Assessment
Crystal structure prediction
Solubility prediction
Thermodynamic stability evaluation
-
Process Optimization
Crystal morphology prediction and optimization
Development of crystallization process
Advantages
-
Unmatched Expertise
XtalPi’s proven technology is a unique blend of solid-state experimental screening, crystal form prediction, and microcrystalline diffraction
-
Inclusive Service
Comprehensive service from preclinical to commercialization; including system screening, process development, support for registration and patent applications
-
Proven Track Record
Successful completion of 300+ collaboration projects since 2018 with most of the top-20 pharmaceutical companies worldwide
Technology Focus
Crystal Structure Prediction (CSP)
Our CSP algorithm begins with a global search of all possible 3D crystal structures of a target molecule. AI machine learning is used to filter and cluster millions of generated structures. Advanced QM calculations rank the structures and MD simulations examine the relative stability of crystal polymorphs for complex systems, including free bases, cocrystals, hydrates and solvates.
Microcrystal Electron Diffractioon (MicroED)
Our in-house cryoEM facility can perform MicroED analysis to provide precise structural determination of small molecules. From small amounts of powder samples, we can elucidate high-quality MicroED data and solve for the 3D crystal structure in much shorter time than traditional crystallography.
XRPD
Solid research laboratory
Crystallization platform (EasyMax)
MicroED
XtalPi is keenly aware that every research partner has unique needs and priorities, and is happy to create a customized solution to optimize your research program